收入分配与居民健康——基于Meta回归分析

[目的/意义]梳理中国收入分配状况与居民健康之间关系的相关文献,探讨与回应以往研究结论不一致现象,为提高该领域的研究质量提供参考。[方法/过程]根据30篇主要文献的46份经验结果,运用Meta回归分析方法,从数据类型、样本特征、指标选取、理论框架、估计方法、控制变量、研究区域、时间跨度等方面检验了不同的研究特征对收入不平等与居民健康关系的实证结果的影响。[结果/结论]多数实证研究支持"收入不平等假说",即收入不平等不利于人们的健康状况,考虑非线性关系的研究中绝大多数支持倒"U"型关系。同时,多项研究特征影响收入不平等与居民健康之间的关系,尤其是样本量、城乡差异、理论框架、估计方法、区域、时间跨...

Full description

Saved in:
Bibliographic details
Volume: 29
Main Author: 郑晓冬
Format: Journal Article
Language: Chinese
Place of publication: 中国农业大学经济管理学院 北京 100083 2018
美国圣路易斯华盛顿大学布朗学院 美国圣路易斯 63112
published in: 西部经济管理论坛 Vol. 29; no. 1; pp. 23 - 31
Data of publication: 2018
ISSN: 2095-1124
Alternate Title: Income Inequality and Health——on the Basis of Meta Analysis
Classification Codes:
Bibliography: 51-1738/F
Zheng Xiaodong1,2 (1. School of Economies and Management, China Agricultural University, Beijing 100083, China; 2. Brown School, Washington University in St. Louis, St. Louis USA 63112)
[Purpose/Significance]The analysis reviews the literature on the relationship between income distribution and residents' health in China,and explores the reasons of the inconsistency between previous research findings,so as to provide references for improving the quality of research in this field.[Method/Process]Based on 46 empirical results in 30 main existing empirical literature,this article uses Meta regression analysis method to analyze how different study characteristics such as data type,sample characteristics,index selection,theoretical framework,estimation method,control variables,study area and time span affect empirical results of the relation of income inequality and health. [Results/Conclusion]The results show that the empirical results of the income inequality in China are influenced by many studies chara
Subjects:
Online Access: available in Bonn?
Database: 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Database information Databases - DBIS